Does Evolutionary Plasticity Evolve?
نویسنده
چکیده
During the development of a multicellular organism from a zygote, a large number of epigenetic interactions take place on every level of suborganismal organization. This raises the possibility that the system of epigenetic interactions may compensate or "buffer" some of the changes that occur as mutations on its lowest levels, and thus stabilize the phenotype with respect to mutations. This hypothetical phenomenon will be called "epigenetic stability." Its potential importance stems from the fact that phenotypic variation with a genetic basis is an essential prerequisite for evolution. Thus, variation in epigenetic stability might profoundly affect attainable rates of evolution. While representing a systemic property of a developmental system, epigenetic stability might itself be genetically determined and thus be subject to evolutionary change. Whether or not this is the case should ideally be answered directly, that is, by experimentation. The time scale involved and our insufficient quantitative understanding of developmental pathways will probably preclude such an approach in the foreseeable future. Preliminary answers are sought here by using a biochemically motivated model of a small but central part of a developmental pathway. Modeled are sets of transcriptional regulators that mutually regulate each other's expression and thereby form stable gene expression patterns. Such gene-expression patterns, crucially involved in determining developmental pattern formation events, are most likely subject to strong stabilizing natural selection. After long periods of stabilizing selection, the fraction of mutations causing changes in gene-expression patterns is substantially reduced in the model. Epigenetic stability has increased. This phenomenon is found for widely varying regulatory scenarios among transcription factor genes. It is discussed that only epistatic (nonlinear) gene interactions can cause such change in epigenetic stability. Evidence from paleontology, molecular evolution, development, and genetics, consistent with the existence of variation in epigenetic stability, is discussed. The relation of epigenetic stability to developmental canalization is outlined. Experimental scenarios are suggested that may provide further evidence.
منابع مشابه
Evolving Synaptic Plasticity with an Evolutionary Cellular Development Model
Since synaptic plasticity is regarded as a potential mechanism for memory formation and learning, there is growing interest in the study of its underlying mechanisms. Recently several evolutionary models of cellular development have been presented, but none have been shown to be able to evolve a range of biological synaptic plasticity regimes. In this paper we present a biologically plausible e...
متن کاملWagner's canalization model.
Wagner (1996, Does evolutionary plasticity evolve? Evolution 50, 1008-1023.) and Siegal and Bergman, 2002 and Azevedo et al., 2006 have studied a simple model of the evolution of a network of N genes, in order to explain the observed phenomenon that systems evolve to be robust. These authors primarily considered the case N=10 and used simulations to reach their conclusions. Here we investigate ...
متن کاملRelaxed genetic constraint is ancestral to the evolution of phenotypic plasticity.
Phenotypic plasticity--the capacity of a single genotype to produce different phenotypes in response to varying environmental conditions--is widespread. Yet, whether, and how, plasticity impacts evolutionary diversification is unclear. According to a widely discussed hypothesis, plasticity promotes rapid evolution because genes expressed differentially across different environments (i.e., genes...
متن کاملEvolutionary and Computational Advantages of Neuromodulated Plasticity
The integration of modulatory neurons into evolutionary artificial neural networks is proposed here. A model of modulatory neurons was devised to describe a plasticity mechanism at the low level of synapses and neurons. No initial assumptions were made on the network structures or on the system level dynamics. The work of this thesis studied the outset of high level system dynamics that emerged...
متن کاملWhen to rely on maternal effects and when on phenotypic plasticity?
Existing insight suggests that maternal effects have a substantial impact on evolution, yet these predictions assume that maternal effects themselves are evolutionarily constant. Hence, it is poorly understood how natural selection shapes maternal effects in different ecological circumstances. To overcome this, the current study derives an evolutionary model of maternal effects in a quantitativ...
متن کاملAn evolutionary frame of work to study physiological adaptation to high altitudes Un marco conceptual para estudiar adaptaciones fisiológicas a altas altitudes
How complex physiological systems evolve is one of the major questions in evolutionary physiology. For example, how traits interact at the physiological and genetic level, what are the roles of development and plasticity in Darwinian evolution, and eventually how physiological traits will evolve, remains poorly understood. In this article we summarize the current frame of work evolutionary phys...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Evolution; international journal of organic evolution
دوره 50 3 شماره
صفحات -
تاریخ انتشار 1996